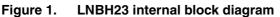

AN2713 Application note


LNB power supply based on the LNBH23 supply and control IC with step-up and I²C interface

Introduction

This application note is intended to provide additional information and suggestions for the correct use of the LNBH23 device. All waveforms shown are based on the demonstration board (order code STEVAL-CBL003V1) described in *Section 5*.

The LNBH23 is an integrated solution for supplying/interfacing satellite LNB modules. It provides good performance in a simply and cheaply way, with minimum external components necessary. It includes all functions needed for LNB supply and interfacing, in accordance with international standards. Moreover, it includes an I²C bus interface and, thanks to a fully integrated step-up DC-DC converter, it functions with a single input voltage supply ranging from 8 V to 15 V.

Content

1	Bloc	k diagram description6
	1.1	Step-up controller 6
	1.2	Pre-regulator block
	1.3	I ₂ C interface and diagnostics
	1.4	22 kHz oscillator and EXTM function7
	1.5	Tone detector
	1.6	DiSEqC communication 8
	1.7	Linear post-regulator, modulator and protection
2	Pin	description
3	Com	ponent selection guidelines 11
	3.1	Input capacitors
	3.2	Ferrite bead
	3.3	DC-DC converter output capacitors
	3.4	DC-DC converter Schottky diode 13
	3.5	DC-DC converter inductor 13
	3.6	Output current limit-RSEL selection
	3.7	Undervoltage diode protection 15
	3.8	DiSEqC implementation and inductor selection
	3.9	TVS diode
4	Othe	er application circuits 17
	4.1	18 V to 13 V fast transition with high bus capacitance
	4.2	Reverse voltage and lightning surge protection
5	Layo	out guidelines
	5.1	PCB layout
	5.2	Startup procedure

6	Software installation 27			
		How to use the LNBH23 demonstration board with the LNBxxx control suite software		
7	Revis	ion history		

List of tables

	LNBH23 pin description	9
Table 2.	LNBH23 demonstration board BOM list 1	1
Table 3.	Recommended Schottky diode 1	3
Table 4.	Recommended inductors 1	4
Table 5.	Recommended inductors for output R-L filter 1	6
Table 6.	Recommended LNBTVS 1	6
Table 7.	Document revision history	39

List of figures

Figure 1.	LNBH23 internal block diagram	. 1
Figure 2.	EXTM timing control	. 7
Figure 3.	DiSEqC timing control.	. 8
Figure 4.	LNBH23 pin configuration.	
Figure 5.	LNB power supply schematic using the LNBH23	11
Figure 6.	External circuit to reduce 18 V to 13 V fall time transition	17
Figure 7.	Fast transition timing sequence	
Figure 8.	Fast transition timing control with 22 kHz tone	19
Figure 9.	External circuit protection schematic	20
Figure 10.	STEVAL-CBL003V1 demonstration board photo (PowerSSO-24 package)	21
Figure 11.	STEVAL-CBL005V1 demonstration board photo (QFN32 package)	21
Figure 12.	STEVAL-CBL003V1 PCB top layer	22
Figure 13.	STEVAL-CBL003V1 PCB bottom layer	22
Figure 14.	STEVAL-CBL003V1 component layout	
Figure 15.	STEVAL-CBL005V1 PCB top layer	
Figure 16.	STEVAL-CBL005V1 PCB bottom layer	
Figure 17.	STEVAL-CBL005V1 component layout	
Figure 18.	STEVAL-CBL003V1 connectors	
Figure 19.	STEVAL-CBL005V1 connectors	
Figure 20.	STEVAL-CBL003V1 bench test	
Figure 21.	STEVAL-CBL005V1 bench test	
Figure 22.	PC to I ² C main window	
Figure 23.	I ² C bus communication error	
Figure 24.	Main settings window	
Figure 25.	Device selection window	
Figure 26.	Parallel port setting	
Figure 27.	LPT1 setting	
Figure 28.	Password setting	
Figure 29.	I ² C device address setting	
Figure 30.	Autoread setting	
Figure 31.	Power-on at 13.4 V	
Figure 32.	Power-on at 18.5 V	
Figure 33.	LLC activation	
Figure 34.	Tone activation	
Figure 35.	Overload detection	
Figure 36.	Overtemperature detection	
Figure 37.	PCL deactivation.	
Figure 38.	AUX activation	38

1 Block diagram description

The internal blocks of the LNBH23 are described in the paragraphs that follow.

1.1 Step-up controller

The LNBH23 features a built-in step-up DC-DC converter that, from a single supply source ranging from 8 V to 15 V, generates the voltages that allow the linear post-regulator to work with minimum power dissipation. The external components of the DC-DC converter are connected to the Lx and VUP pins (see *Figure 5*). No external power MOSFET is needed.

1.2 Pre-regulator block

This block includes a voltage reference connected to the BYP pin, an undervoltage lockout circuit, intended to disable the whole circuit when the supplied Vcc drops below a fixed threshold (6.7 V typ) and a power-on reset that sets all the I^2C registers to zero when the Vcc is turned on and rises from zero above the on threshold (7.3 V typ).

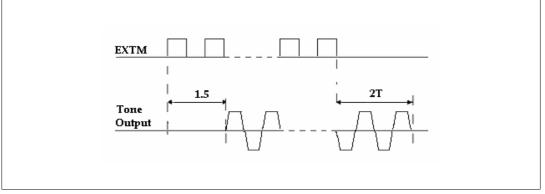
1.3 I²C interface and diagnostics

The main functions of the device are controlled via l^2C bus by writing 5 bits on the system register (SR bits in write mode). In the same register there are 5 bits that can be read back (SR bits in read mode) and provide 5 diagnostic functions.

Five bits report the diagnostic status of five internal monitoring functions:

- VMON: output voltage diagnostic. If the output voltage level is below the guaranteed limit (refer to the device datasheet) the VMON I²C bit is set to "1".
- TMON: 22 kHz tone diagnostic. If the 22 kHz tone amplitude and/or the tone frequency is outside of the guaranteed limits (refer to the device datasheet.), the TMON I²C bit is set to "1".
- IMON: minimum output current diagnostic to detect if no LNB is connected on the bus or a cable not connected to the IRD. The LNBH23 is provided with a minimum output current flag by the IMON I²C bit in read mode, which is set to "1" if the output current is lower than 12 mA (typ) with ITEST=1 and 6 mA with ITEST=0.
- OTF: overtemperature flag. If overheating occurs (junction temperature exceeds 150 °C), the OTF I²C bit is set to "1".
- OLF: overload flag. If the output current required exceeds the current limit threshold or a short-circuit occurs, the OLF I²C bit is set to "1".

Moreover, three bits will report the last output voltage register status (EN, VSEL, LLC) received by the IC. The LNBH23 I²C interface address can be selected among two different addresses by setting the voltage level of the dedicated ADDR pin.



1.4 22 kHz oscillator and EXTM function

The internal 22 kHz tone generator is factory-trimmed in accordance with current standards and can be controlled by the DSQIN pin (TTL-compatible), which allows immediate DiSEqCTM data encoding. The rising and falling edges are kept within the 5 µs to 15 µs range, 8 µs (typ) for 22 kHz. The duty cycle is 50% (typ), and modulates the DC output with a 0.650 Vpp (typ) amplitude as well as the DSQIN pin.

The EXTM is a logic input to allow the activation of the 22 kHz tone output, on the V_{oTx} pin, by using the device's integrated tone generator. If the EXTM pin is used, the internal 22 kHz generator must be kept ON (TTX pin or TTX bit set HIGH). When a TTL-compatible 22 kHz signal is applied (for example, a 22 kHz square wave from the demodulator), the EXTM internal circuit detects the 22 kHz TTL signal code and activates the internal 22 kHz tone on the V_{oTx} output. The 22 kHz tone on the output is activated after a delay from the TTL signal presence on the EXTM pin. The tone output starts with about a 1.5 T delay after the 1st cycle of the TTL signal and stops after about a 2 T delay after the TTL signal on the EXTM has expired (see *Figure 2* below). The tone output can also be activated via the DSQIN pin. It starts with a 1.5 T ± 25 μ s maximum delay and stops after 2 T ± 25 μ s maximum delay with 20~24 kHz tolerance for EXTM input pin.

1.5 Tone detector

This block provides a complete circuit to decode the 22 kHz burst code present on the DETIN pin in a digital signal by the DSQOUT pin where an open drain MOSFET is connected. The tone is also monitored and a dedicated bit (TMON) provides the diagnostic function described in the *Section 1.3*.

1.6 DiSEqC communication

The following steps must be taken to ensure the correct implementation of the DiSEqC 2.0 communication:

- T0: before starting the DiSEqC transmission, the TTX function must be activated (through the TTX pin or TTX I²C bit).
- T1: after a 500 µs minimum, the IC is ready to receive the DiSEqC code through the DSQIN pin (or, alternatively, the TEN I²C bit can be set to HIGH to activate the 22 kHz burst).
- T2: when the transmission has elapsed, the TTX function must be set to LOW (through the TTX pin or TTX I²C bit) not earlier than 200 µs after the last falling edge of the DiSEqC code.

LNBout DSQIN TTX T0 T1 DISEqC Transmit Mode DISEqC Receive Mode DISEqC Receive Mode

Figure 3. DiSEqC timing control

1.7 Linear post-regulator, modulator and protection

The output voltage selection and the current selection commands join this block, which manages all the LNB output function. This block gives feedback to the I²C interface, from the diagnostic block, regarding the status of the thermal protection, overcurrent protection and output settings.

2 Pin description

The LNBH23 is available in exposed pad PowerSSO-24 or QFN32 packages for surface mount assembly. *Figure 4* shows the device pinouts for each package. *Table 1* briefly summarizes the pin functionality.

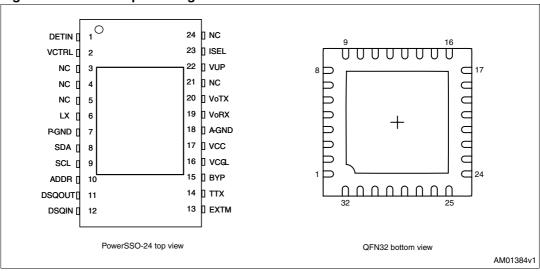
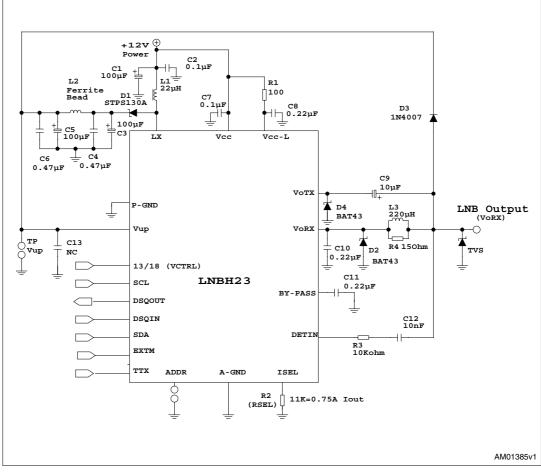
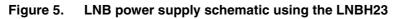


Figure 4. LNBH23 pin configuration

Pin n° QFN32	Pin n° PSSO-24	Symbol	Name	Pin Function	
19	17	V _{CC}	Supply input	8 to 15 V IC DC-DC power supply	
18	16	V _{CC} -L	Supply input	8 to 15 V analog power supply	
4	6	Lx	NMOS drain	Integrated N-channel power MOSFET drain	
27	22	V _{UP}	Step-up voltage	Input of the linear post-regulator. The voltage on this pin is monitored by the internal step-up controller to keep a minimum dropout across the linear pass transistor	
21	19	V _{oRX}	LDO output port	Output of the integrated linear post-regulator	
22	20	V _{otx}	Output port for 22 kHz tone TX	TX output to the LNB	
6	8	SDA	Serial data	Bi-directional data from/to I ² C bus	
9	9	SCL	Serial clock	Clock from I ² C bus	
12	12	DSQIN	DiSEqC input	This pin accepts the DiSEqC code from the main microcontroller. The LNBH23 uses this code to modulate the internally-generated 22 kHz carrier. Set this pin to ground if not used	

Table 1. LNBH23 pin description


Pin n° QFN32	Pin n° PSSO-24	Symbol	Name	Pin Function	
14	14	ттх	TTX enable	This pin, as well as the TTX I ² C bit of the system register, is used to control the TTX function enable before starting the 22 kHz tone transmission. Set this pin to ground if not used	
29	1	DETIN	Tone decoder input	22 kHz tone decoder input, must be AC coupled to the DiSEqC 2.0 bus	
11	11	DSQOUT	DiSEqC output	Open drain output of the tone detector to the main microcontroller for DiSEqC 2.0 data decoding. It is low when a tone is detected on the DETIN pin	
13	13	EXTM	External modulation	External modulation logic input pin which activates the 22 kHz tone output on the VoTX pin. Set to ground if not used	
5	7	P-GND	Power ground	DC-DC converter power ground	
20	18	A-GND	Analog ground	Analog circuits ground	
15	15	ВҮР	Bypass capacitor	Needed for internal preregulator filtering. The BYP pin is intended only to connect an external ceramic capacitor. Any connection of this pin to external current or voltage sources may cause permanent damage to the device	
10	10	ADDR	Address setting	Two I ² C bus addresses available by setting the address pin level voltage	
28	23	ISEL	Current selection	The resistor "R _{SEL} " connected between I _{SEL} and GND defines the linear regulator current limit threshold with the equation: Imax(typ.)=10000/R _{SEL}	
30	2	VCTRL	Output voltage control	13 V - 18 V linear regulator V _{oRX} switch control. To be used only with VSEL=1. If VCTRL=1 or floating V _{oRX} =18.5 V (or 19.5 V if LLC=1). If VCTRL=0 then V _{oRX} =13.4 V (LLC=either 0 or 1)	
ePad	ePad	ePad	ePad	On the bottom side of the PowerSSO-24 package. Must be connected with power ground and to the ground layer through vias to dissipate heat	


Table 1. LNBH23 pin description (continued)

3 Component selection guidelines

The LNBH23 application schematic in *Figure 5* shows the typical configuration for a single LNB power supply.

Note: TVS diode to be used if surge protection is required (see Section 3.9).

Table 2. LINBH23 demonstration board BOM list	Table 2.	LNBH23 demonstration board BOM list
---	----------	-------------------------------------

Component	Notes
IC1	LNBH23 PSSO-24 ePad for STEVAL-CBL003V1 LNBH23 QFN32 ePad for STEVAL-CBL005V1
C1 100 µF 35 V electrolytic capacitor, higher value is suitable	
C3, C5	100 μ F 25 V electrolytic capacitor, ESR in the 150 m Ω to 350 m Ω range (see <i>Section 3.3</i>)
C9	10 µF 35 V electrolytic capacitor
C2, C7 0.1 µF 35 V ceramic capacitors	
C4, C6	0.47 µF 35 V ceramic capacitors

Doc ID 14431 Rev 1

Component	Notes				
C8, C10, C11	0.22 µF 35 V ceramic capacitors				
C12	0.01 µF 35 V ceramic capacitor				
R1	100 Ω 1/4 W resistor				
R2 (R _{SEL})	11 kΩ 1/16 W resistor (see <i>Section 3.6</i>)				
R3	10 kΩ 1/4 W resistor				
R4	15 Ω 1/4 W resistor				
D1	STPS130A or similar Schottky diode (see Section 3.4)				
D2, D4	BAT43 BAT43 (or Schottky diode with I _{F(AV)} >0.2 A, V _{RRM} >25 V) or BAT30, BAT54, TMM BAT43, 1N5818				
D3	1N4007				
L1	22 µH Inductor with Isat>I _{PEAK} (see Section 3.5)				
L2	Ferrite bead filter; recommended part numbers: Panasonic EXCELS A35, Murata BL01RN1-A equivalent with similar or higher impedance and current rating higher than 2 A (see Section 3.2				
L3	220 μ H inductor with current rating higher than rated output current				
TVS LNBTVS22-XX TVS protection diode is recommended. Other solutions can be used dependent the level of surge protection required (see <i>Section 3.9</i>)					

Table 2.	LNBH23 demonstration board BOM list (continued)
	ENDINE demonstration board bow list (continued)

3.1 Input capacitors

An electrolytic bypass capacitor (C1 in *Figure 5*) between 100 μ F and 470 μ F located close to the LNBH23 is needed for stable operation. In any case, a ceramic capacitor between 100 nF and 470 nF is recommended to reduce the switching noise at the input voltage pin.

3.2 Ferrite bead

The most important parameter when selecting the ferrite bead is the rated current. Ensure that the ferrite has a current rating of at least 2 A and impedance higher than 60 Ω at 100 MHz.

3.3 DC-DC converter output capacitors

Two low-cost electrolytic capacitors are needed on the DC-DC converter output stage (C3 and C5 in *Figure 5*). Moreover, two ceramic capacitors are recommended to reduce high frequency switching noise. The switching noise is due to the voltage spikes of the fast switching action of the output switch, and to the parasitic inductance of the output capacitors. To minimize these voltage spikes, special low-inductance ceramic capacitors can be used, and their lead lengths must be kept short and as close as possible to the IC pins (C4 and C6 in *Figure 5*). To further reduce switching noise, a ferrite bead is recommended between the capacitors (see *Section 3.2* for required rating and impedance).

The most important parameter for the output capacitors is the effective series resistance (ESR). The DC-DC converter control loop circuit has been designed to work properly with low-cost electrolytic capacitors which have ESR in the range of 200 m Ω . A 100 µF output filter capacitor with ESR between 150 m Ω and 350 m Ω is a good choice in most application conditions. It is also possible to use electrolytic capacitors up to 220 µF with ESR between 100 m Ω and 300 m Ω . The capacitor voltage rating must be at least 25 V, but if the highest voltage selection condition is used (AUX=1), 35 V or higher voltage capacitors are suggested.

3.4 DC-DC converter Schottky diode

In typical application conditions it is beneficial to use a 1 A Schottky diode which is suitable for the LNBH23 DC-DC converter. Taking into consideration that the DC-DC converter Schottky diode must be selected depending on the application conditions ($V_{RRM} > 25$ V), an N-channel Schottky diode like the STPS130A is recommended.

The average current flowing through the Schottky diode is lower than I_{PEAK} and can be calculated using *Equation 1*. In worst-case conditions, such as low input voltage and higher output current, a Schottky diode capable of supporting the I_{PEAK} should be selected. I_{PEAK} can be calculated using *Equation 2*.

Equation 1

$$Id = Iout \cdot \frac{Vout}{Vin}$$

Vendor	Part number	l _F (av)	V _F (max)
	1N5818	1 A	0.50 V
	1N5819	1 A	0.55 V
	STPS130A	1 A	0.46 V
STMicroelectronics	STPS1L30A	1 A	0.30 V
STWICTORIECTIONICS	STPS2L30A	2 A	0.45 V
	1N5822	3 A	0.52 V
	STPS340	3 A	0.63 V
	STPS3L40A	3 A	0.5 V

Table 3.Recommended Schottky diode

3.5 DC-DC converter inductor

The LNBH23 operates with a standard 22 μ H inductor for the entire range of supply voltages and load current. The inductor saturation current rating (where inductance is approximately 70% of zero current inductance) must be greater than the switch peak current (I_{PEAK}) calculated at:

- maximum load (lout_{max})
- minimum input voltage (Vin_{min})
- maximum DC-DC output voltage (VUP_{max} =Vout_{max} +0.75 V)

In this condition the switch peak current is calculated using the formula in *Equation 2*.

Equation 2

$$Ipeak = \frac{VUP_{max} \cdot Iout_{max}}{Eff \cdot Vin_{min}} + \frac{Vin_{min}}{2LF} \left(1 - \frac{Vin_{min}}{VUP_{max}}\right)$$

where

- Eff is the efficiency of the DC-DC converter (93% typ. at highest load)
- L is the inductance (22 µH typ.)
- F is the PWM frequency (220 kHz typ.).

Example:

Application conditions:

- Vout_{max}= 19.2 V (supposing EN=VSEL=1, LLC=0)
- Vin_{min}= 11 V
- Vup_{max}=Vout_{max}+V_{drop}= 19.2 V+0.75 V= 19.95 V
- lout_{max}= 500 mA
- Eff=90%

Based on *Equation 2* and the preceding application conditions, I_{PEAK} is:

Equation 3

lpeak =
$$\frac{19.95 \cdot 0.5}{0.9 \cdot 11} + \frac{11}{2 \cdot 22 \cdot 10^{-6} \cdot 220 \cdot 10^{3}} \left(1 - \frac{11}{19.95}\right) = 1.52 \text{ A}$$

Several inductors suitable for the LNBH23 are listed in the *Table 4*, although there are many other manufacturers and devices that can be used. Consult each manufacturer for more detailed information and for their entire selection of related parts, since many different shapes and sizes are available. Ferrite core inductors should be used to obtain the best efficiency. Choose an inductor that can handle at least the I_{PEAK} current without saturating, and ensure that the inductor has a low DCR (copper wire resistance) to minimize power losses and, consequently, to maximize total efficiency.

 Table 4.
 Recommended inductors

Vendor	Part number	Isat(A)	DRC (m Ω)	Mounting type
Sumida	CD104-220MC	1.6	67	SMD
Sumua	RHC110-220M	2.4	88	Through-hole
	822LY-220K	1.3	70	Through-hole
Toko	824LY-220K	1.72	76	Through-hole
ΙΟΚΟ	A671HN-220L	2.44	21	Through-hole
	A814LY-220M	2.0	75	SMD

		intinucu)		
Vendor	Part number	Isat(A)	DRC (m Ω)	Mounting type
Panasonic	ELC08D220E	1.8	51	Through-hole
Fanasonic	ELC10D220E	3.2	40	Through-hole
	DC1012-223	2.5	46	Through-hole
Coilcraft	PVC-0-223-03	3	35	Through-hole
	DO3316P-223	2.6	85	SMD

 Table 4.
 Recommended inductors (continued)

3.6 Output current limit-R_{SEL} selection

The linear regulator current limit threshold can be set through an external resistor connected to ISEL pin. The resistor value defines the output current limit using the equation:

Equation 4

$$Imax(A) = \frac{10000}{R_{SEL}}$$

where R_{SEL} is the resistor connected between the ISEL pin and GND. The highest selectable current limit threshold is 1.0 A (typ) with R_{SEL} =10 k Ω .

3.7 Undervoltage diode protection

During a short-circuit removal on the LNB output, negative voltage spikes may occur on the V_{oTx} and V_{oRx} pins. To prevent reliability problems, two low-cost Schottky diodes are used between those pins and GND (see D2 and D4 in *Figure 5*).

3.8 DiSEqC implementation and inductor selection

To comply with DiSEqC 2.x requirements, an output R-L filter is needed. The 22 kHz tone transmission occurs through the V_{oTX} pin, whereas the DC voltage is provided from the V_{oRX} pin. The V_{oTX} function must be activated only during the tone transmission while the V_{oRX} provides the 13/18 V output voltage. This solution allows the 22 kHz tone to pass without any losses due to the R-L filter impedance. But to respect the minimum DC voltage requirement, it is recommended to use an inductor with a current rating higher than the rated output current and a low DRC to minimize the voltage drop.

For example, supposing:

- lout = 500 mA
- DRC=51 m Ω (Panasonic inductor ELC08D221E)

Equation 5

 $Vdrop(V) = DCR(\Omega) \cdot Iout(A) = 0.051 \cdot 0.5 = 0.025 V$

Several inductors suitable for the LNBH23 are listed in the Table 5.

Vendor	Part number	Isat(A)	DRC(mΩ)	Mounting type
Sumida	CD104-221MC	1.6	67	SMD
Sumua	RHC110-221M	2.4	88	Through-hole
	822LY-221K	1.3	70	Through-hole
Toko	824LY-221K	1.72	76	Through-hole
ΙΟΚΟ	A671HN-221L	2.44	21	Through-hole
	A814LY-221M	2.0	75	SMD
Panasonic	ELC08D221E	1.8	51	Through-hole
Panasonic	ELC10D221E	3.2	40	Through-hole
	DC1012-223	2.5	46	Through-hole
Coilcraft	PVC-0-223-03	3	35	Through-hole
	DO3316P-223	2.6	85	SMD

Table 5. Recommended inductors for output R-L filter

3.9 TVS diode

The LNBH23 device is directly connected to the antenna cable in a set-top box. Atmospheric phenomenon can cause high voltage discharges on the antenna cable causing damage to the attached devices. Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high voltage or current transients. LNBH23 devices are not able to withstand such high energy discharges, so transient voltage suppressor (TVS) devices are used to protect the LNBH23 and other devices electrically connected to the antenna cable.

The LNBTVS developed by STMicroelectronics is a dedicated lightning and electrical overstress surge protection device for LNB voltage regulators. These protection devices are designed to comply with the stringent IEC 61000-4-5 standards and to withstand surges of up to 500 A. ST offers a broad selection of these products for cost/performance optimization.

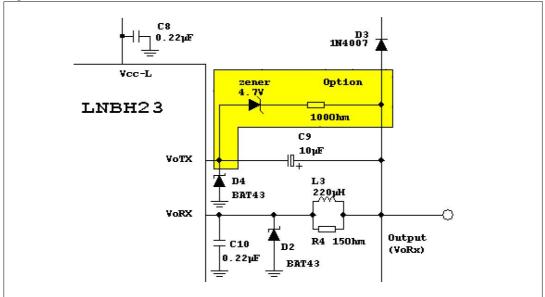
The selection of the TVS diode must be made based on the maximum peak power dissipation that the diode is capable of supporting.

Vendor	Part number	VBR _{TYP} (V)	Ppp(W)10/100µs
	LNBTVS4-220	23.1	1800
STMicroelectronics	LNBTVS4-221	23.1	2000
STMICroelectionics	LNBTVS4-222S	23.1	2000
	LNBTVS6-221S	21.3	3000

 Table 6.
 Recommended LNBTVS

Select the TVS diode which is capable of supporting the required Ppp(W) value indicated in *Table 6*.

AN2713


4 Other application circuits

The following paragraphs present two particular application solutions: the first can be used to reduce the 18 V to 13 V transition time, while the second is designed to improve lightning surge protection.

4.1 18 V to 13 V fast transition with high bus capacitance

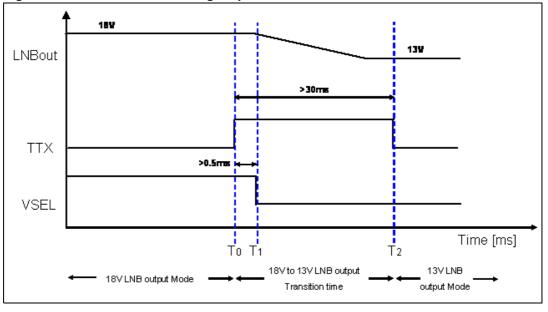
In cases of very high bus capacitance (Cbus>10 μ F) and very low output current, an external circuit (with a 4.7 V Zener diode and a 100 Ω series resistor) can be added to reduce 18 V to 13 V transition fall time, as shown in *Figure 6*.

Figure 6. External circuit to reduce 18 V to 13 V fall time transition

The TTX bit (or pin) must be set high only during the transition from 18 V to 13 V. The TTX function activates only the push-pull circuit, but not the tone output. The 22 kHz tone is activated only when the TEN bit (or DSQIN pin) is also set high and injected into the LNB bus through the 10 μ F capacitor.

When the TTX function is activated, the V_{oTx} voltage is internally set at 5 V (typ). below the Vout (for example, if Vout=18 V then V_{oTx} =18-5=13 V) and, at the same time, the P-channel is enabled to sink current (note: the P-channel is internally current-limited).

With a 4.7 V Zener diode, when TTX=high, the current through the Zener is: Iz=(5-4.7)/100=3 mA. If TTX=low, the current through the Zener is negligible.


If there is a high output capacitance present, during the transition from 18 V to 13 V (with TTX=high), the voltage drop (Vout-V_{oTx}) is increased because the V_{oTx} goes quickly to low level (at 13 V-5 V=8 V) and, consequently, the Zener current is also increased until the output capacitance is discharged to 13 V. For example, with 100 μ F on the output, the 18 V to 13 V fall time is about 25 ms.

The following steps must be taken to ensure the correct implementation of 18 to 13 V transition with the V_{oTx} addition circuit shown in *Figure 6*:

- T0: to start the 18 V to 13 V transition the TTX function must be activated at least 0.5 ms before setting the VSEL I²C bit (set HIGH TTX I²C bit or TTX pin).
- T1: set LOW VSEL I²C bit.
- T2: after 30 ms, 18 V to 13 V LNB transition time is elapsed at T2. The 30 ms delay is valid to ensure 18 V to 13 V complete transition in case of Cbus=100 µF and lout=0 mA. The delay time can be modified with different Cbus capacitance and output current value.

Figure 7. Fast transition timing sequence

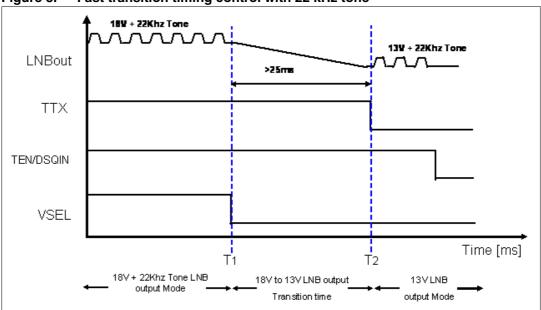


Figure 8. Fast transition timing control with 22 kHz tone

If the internal 22 kHz tone generator is activated (TEN I^2C bit or DSQIN pin is set high), at T1 set low the VSEL I^2C bit or VCTRL pin and after 25 ms, 18 V to 13 V LNB transition time is elapsed at T2.

4.2 Reverse voltage and lightning surge protection

Figure 9 shows a suggested schematic to improve output circuit protection in applications where:

- TVS diode with Vclamp voltage of 25 V is required
- an external power supply source could force a reverse DC voltage of 25 V on the LNB bus

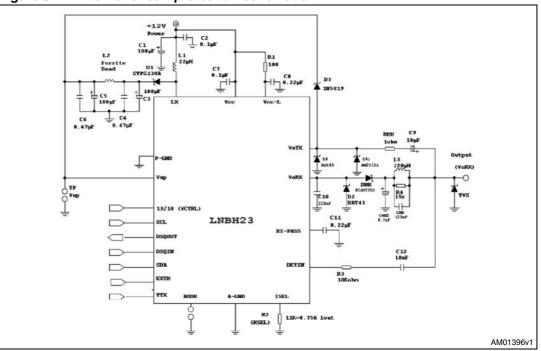


Figure 9. External circuit protection schematic

The Schottky diode prevents the reverse voltage from flowing into the V_{oRx} pin (internally connected to the linear regulator). In applications where a reverse DC voltage (up to 60 V) is forced and low Vout tolerance is required, the recommended part number is STPS3L60U. In any case, it is possible to use a different part based to the DC reverse voltage. D3 shields the V_{oTx} pin because it discharges the reverse voltage into the Vup capacitor and D4c (suggested part number SM2T18A) is mandatory for DC reverse voltage \geq 25 V.

5 Layout guidelines

Due to high current levels and fast switching waveforms, which radiate noise, a proper printed circuit board (PCB) layout is essential. Sensitive analog grounds can be protected by using a star ground configuration. Also, lead lengths should be minimized to reduce stray capacitance, trace resistance, and radiated noise. Ground noise can be minimized by connecting GND, the input bypass capacitor ground lead, and the output filter capacitor ground lead to a single point (star ground configuration). Place input bypass capacitors (C1, C2, C7 and C8) as close as possible to Vcc and GND, and the DC-DC output capacitors (C3, C4, C5 and C6) as close as possible to VUP. Excessive noise at the Vcc input may falsely trigger the undervoltage circuitry, resetting the I²C internal registers. If this occurs, the registers are set to zero and the LNBH23 is put into shutdown mode.

LNB power supply demonstration boards are available for each package option through order codes STEVAL-CBL003V1 (*Figure 10*) and STEVAL-CBL005V1 (*Figure 11*).

Figure 10. STEVAL-CBL003V1 demonstration board photo (PowerSSO-24 package)

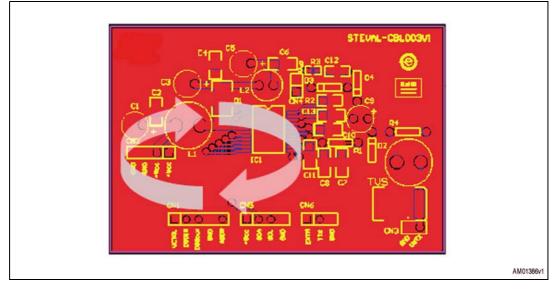
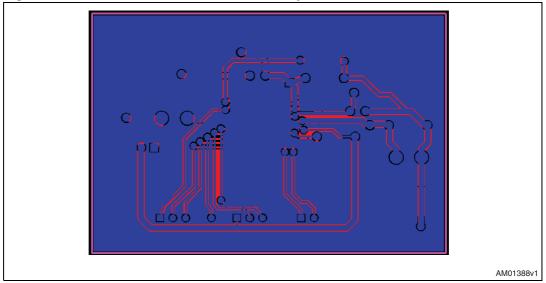
Figure 11. STEVAL-CBL005V1 demonstration board photo (QFN32 package)

5.1 PCB layout

Any switch mode power supply requires a good PCB layout in order to achieve maximum performance. Component placement, and GND trace routing and width are the major issues. Basic rules commonly used for DC-DC converters for good PCB layout should be followed.

All traces carrying current should be drawn on the PCB as short and as thick as possible. This should be done to minimize resistive and inductive parasitic effects, and increase system efficiency.

White arrows indicate the suggested PCB (ring) ground plane to avoid spikes on the output voltage (this is related to the switching side of the LNBH23). Good soldering of the ePad helps on this issue.

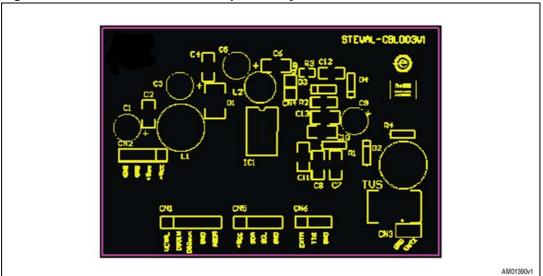
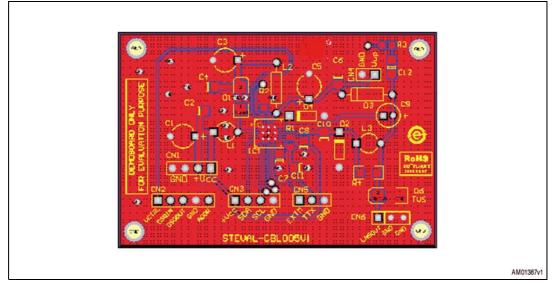


Figure 13. STEVAL-CBL003V1 PCB bottom layer


Doc ID 14431 Rev 1

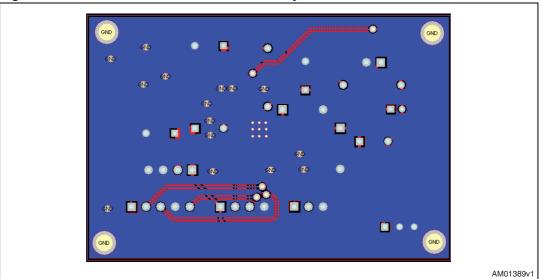
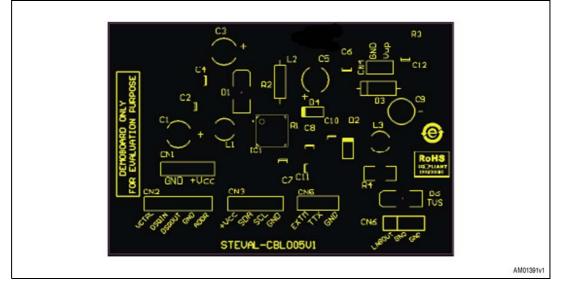



Figure 16. STEVAL-CBL005V1 PCB bottom layer

5.2 Startup procedure

Testing the demonstration board requires a PC with a parallel port (ECP printer port), an I²C bus interface, software (LNBxxx control suite), a dual-output power supply (3 A clamp current or higher) and an electronic load.

- Step 1: Install the LNBXXX control suite software (see Section 6).
- Step 2: Plug the I²C connector into CN5.
- Step 3: Supply the demonstration board through CN2.
- Step 4: Refer to *Section 6.1* of software installation guide to use the software.

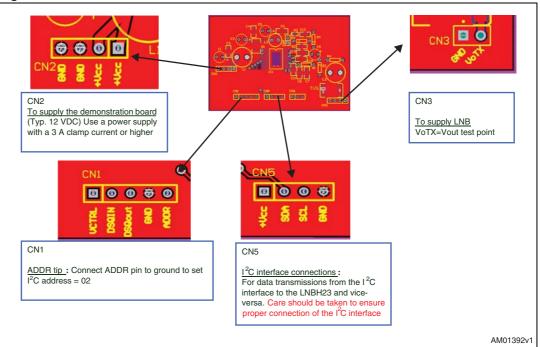


Figure 18. STEVAL-CBL003V1 connectors

Figure 19. STEVAL-CBL005V1 connectors

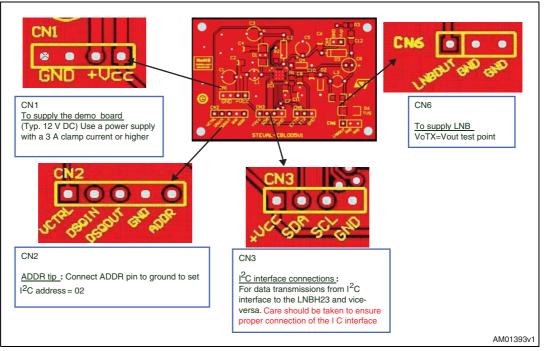


Figure 20. STEVAL-CBL003V1 bench test

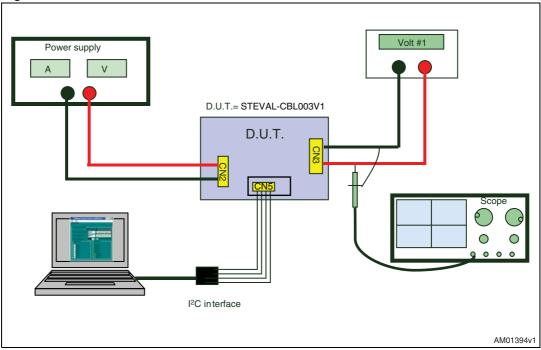
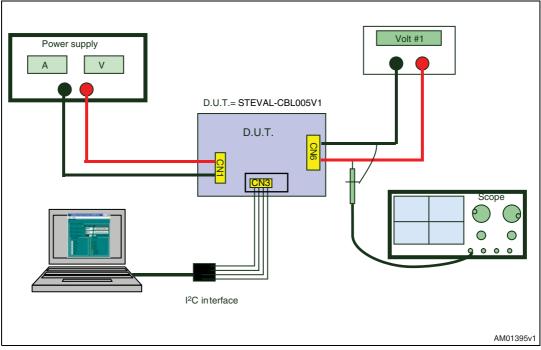
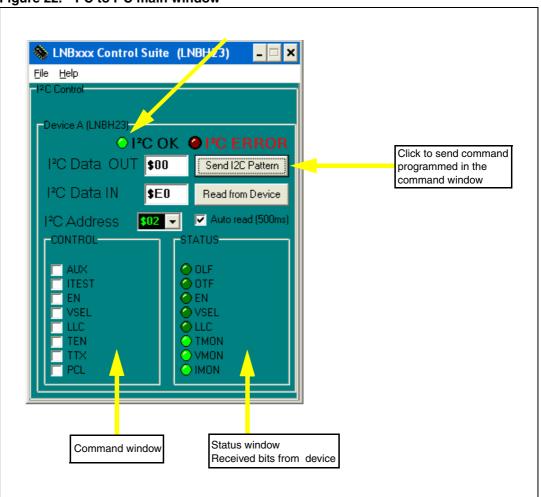



Figure 21. STEVAL-CBL005V1 bench test



6 Software installation

Unzip the compressed file and perform the installation by clicking on the SETUP.exe file.

Click on: Windows[®] "start" menu -> Program -> STMicroelectronics -> LNBxxx control suite. The screen shown in *Figure 22* appears, with a green light indicating that the hardware and software are ready to work.

The red "I²C ERROR" indicator signals that the LPT port needs to be configured, and/or the I²C cable (swap the SCL and SDA, if needed) and power supply need to be checked.

NBxxx Control Suit	e (LNBH23) 🗕 🗖 🗙	
<u>Eile Hylp</u>		
-I2C Contr		
Device A (LN 123)		
	DK IC ERROR	
I²C Data OUT \$0	0 Send I2C Pattern	
I²C Data IN SF	F Read from Device	
I ² C Address \$01		
CONTROL	STATUS	
EN EN	O EN	
	O VSEL	
PCL	O IMON	
I ² C Data IN SF I ² C Address SOT CONTROL AUX HITEST EN VSEL LLC TEN TTX	F Read from Device ✓ Auto read (500ms) STATUS OLF OTF OTF OEN VSEL OLC TMON VMON	

Figure 23. I²C bus communication error

The user can choose the device, printer port address for the PC and correct settings of the SCL and SDA bits to customize the I^2C hardware interface.

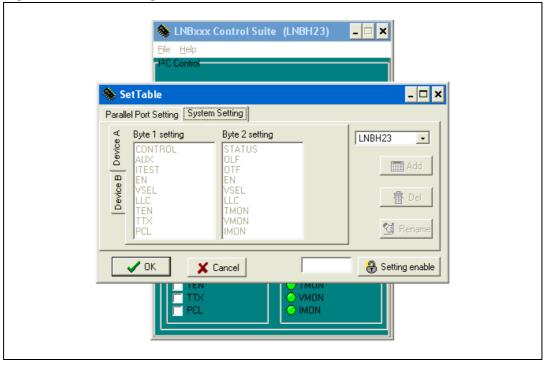


Figure 24. Main settings window

In the system setting menu, the device to be tested can be changed.

Period SetTable _□ × Device A (LNBH23) Parallel Port Setting System Setting I²C Data OUT I²C Data IN Status I²C Data IN CONTROL STATUS I²C Address CONTROL STATUS I²C Address CONTROL STATUS I²C Address CONTROL UC I²C Address VSEL VSEL I²C Address VSEL VSEL I AUX VSEL UC I AUX VSEL US	S LNBxxx Control S	Suite (LNBH23) <mark>– 🗆 ×</mark>	
Device A (LNBH23) SetTable Parallel Port Setting System Setting Parallel Port Setting System Setting I²C Data OUT Byte 1 setting I²C Data IN CONTROL I²C Address CONTROL I²C Address VSEL VSEL ULC LLC LLC TEN TTMON TXX VMON PCL MON	File Help		
I ² C Data OUT I ² C Data OUT I ² C Data IN I ² C Data IN I ² C Address I ² C Address I ² C Address I ² C Data IN I ² C Address IC I ² C Addres IC I ² C Addres		🗞 SetTable	- 🗆 ×
I ² C Data OUT Status Status LNBH23 I ² C Data IN CONTROL ITEST OTF LNBH21 I ² C Address USEL ULC LNBH21 ICC Address ITEN TEN TMON I AUX ITEN TMON LNBH23 I AUX ITEN TMON LNBH24 I AUX ITEN TMON LNBH23	Device A (LNBH23)	Parallel Port Setting System Setting	
	I ² C Data OUT I ² C Data IN I ² C Address	CONTROL AUX ITEST EN VSEL LLC LLC TEN TX VMON	LNBH21 LNBH221 LNBEH21 LNBEH21 LNBH221 LNBH22 LNBH23 LNBH24 LNBH24 LNBP/S21
	VSEL		

Figure 25. Device selection window

From the parallel port setting menu, the LPT parameters can be set.

Figure 26. Parallel port setting

-12C Control	SetTable _ 🗆 🛪
Device A (LNBH23)	
01	Parallel Port Addr. (Hex)
I²C Data OUT	\$378 SCL bit, port \$278 L ▼ Invert
I²C Data IN	SDA bit out, port 7 Data T Invert
I ² C Address	SDA bit in, port 🛛 7 Status 🔽 🔽 Invert
CONTROL	Delay 1000
T ITEST	
	VOK X Cancel

AN2713

Figure 27. LPT1 setting

1ºC Control	
	🗞 SetTable 💶 🗡
Device A (LNBH23)	Setting for
01	Parallel Port Addr \$378 🔽 (Hex)
I²C Data OUT	SCL bit, port 3 CTRL V Invert
I²C Data IN	SDA bit out, port 7 Data 🔽 🗖 Invert
I²C Address	SDA bit in, port 7 Status 💌 🗹 Invert
CONTROL	Delay 1000
	Londy [100
T ITEST	
	Cancel
TEN TTX	

Figure 28. Password setting

Eile Help 12C Control	
1-C Control	🗞 SetTable 🛛 🗸
Device A (LNBH23)	Parallel Port Setting System Setting
○ I²	Parallel Port Addr. \$378 - (Hex)
I²C Data OUT	SCL bit, port 3 CTRL 🗸 🗸 Invert
I²C Data IN	SDA bit out, port 7 Data 🔽 🗖 Invert
I ² C Address	SDA bit in, port 7 Status 💌 🔽 Invert
CONTROL	Delay 1000
T ITEST	
	V OK Cancel
PCL	
<u> </u>	"STM" is the
	password
	(case sensitive)

At this point, the device address can be chosen. For the LNBH23, only 02= ADDR pin force to GND or 03= ADDR pin force to +5 V can be selected.

57

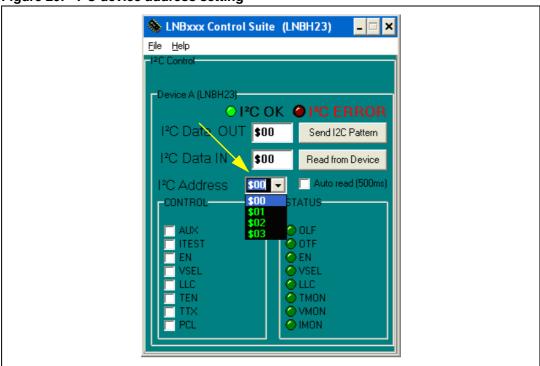
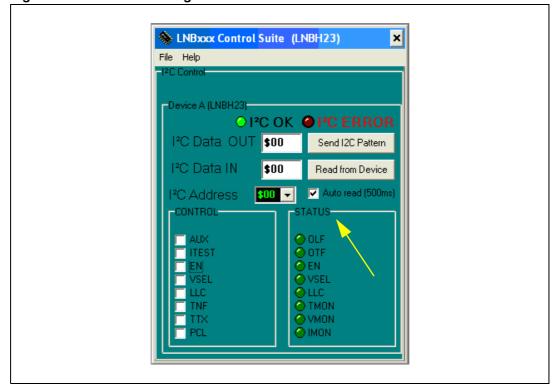



Figure 29. I²C device address setting

To obtain the status of the received bits in real-time, the "Auto read" checkbox must be checked.

Figure 30. Autoread setting

6.1 How to use the LNBH23 demonstration board with the LNBxxx control suite software

To power the IC, place a check in the EN checkbox and click the "Send I²C Pattern" button. If the device accepts the command string, the green indicator turns on. If there is no powerup after sending the command, it may be that the 12 V power supply is not sufficient to start the application, and more current capability is needed.

The screenshot in *Figure 31* shows the following conditions:

- EN=1=ON
- Vout=13.4 V_{typ}

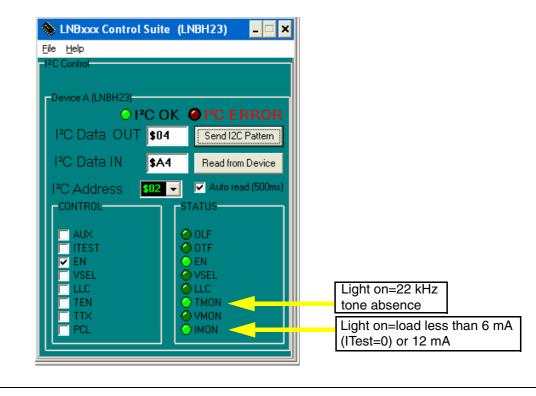


Figure 31. Power-on at 13.4 V

A status light "on" for OLF, OTF, TMON, VMON and IMON indicates that an error has occurred.

The screenshot in *Figure 32* shows the following conditions:

- EN=1, VSEL=1
- Vout=18.5 V_{typ}

Figure 32. Power-on at 18.5 V

<u>File H</u> elp			
12C Control			
-Device A (LNBH23)-	²C OK 🧉	I ² C ERRO	R
I²C Data OUT		Send I2C Pattern	
I²C Data IN	\$AC	Read from Device	e
I ² C Address		Auto read (500n	ns)
CONTROL			
AUX	- I 🧔	DLF DTF	
VSEL		VSEL	
	- ŏ	LLC TMON	
		VMON MON	

The screenshot in *Figure 33* shows the following conditions:

- EN=1, VSEL=1, LLC=1
- Vout=19.5 V_{typ}

Figure 33. LLC activation

💊 LNBxxx Control S	uite (LNBH23) 🛛 🗖 🗙
<u>File</u> Help	
Device A (LNBH23)	
○ I ² C	OK IC ERROR
I²C Data OUT	1C Send I2C Pattern
I²C Data IN	BC Read from Device
I²C Address 🚺	12 💌 🔽 Auto read (500ms)
CONTROL	STATUS
	📀 OLF
	OTF
VSEL	O EN O VSEL
	Ŏ LLC
TEN	O TMON
	O IMON

The screenshot in *Figure 34* shows the following conditions:

- EN=1, TEN=TTX=1
- Vout=13.4 V_{typ} + 22 kHz tone

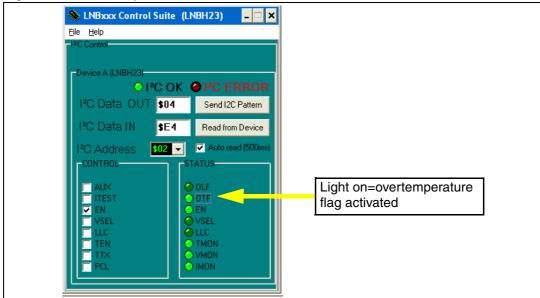
Figure 34. Tone activation

<u>File H</u> elp		
-12C Control		
Device A (LNBH23)		
○ ²(C OK 🧉 I²C ERROF	τ
I²C Data OUT	\$64 Send I2C Pattern	
I²C Data IN	\$84 Read from Device	
I ² C Address	02 👻 🔽 Auto read (500m	s)
CONTROL	STATUS	
	🔿 OLF	
T ITEST	OTF	
VSEL	O EN O VSEL	
	🖉 LLC	
	TMON	For 22 kHz tone, TEN and
	O IMON	TTX bits must be selected

Overload condition

If the OLF (overload flag) indicator is on, a fault condition on the output has been detected and the status of this bit is changed. It turns off when the fault condition is removed.

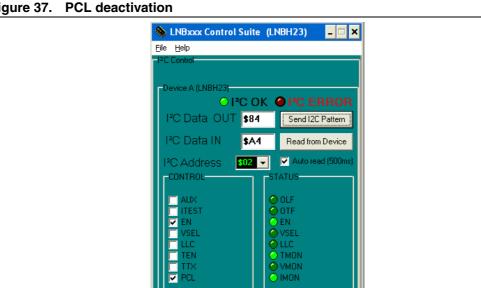
- EN=1
- Vout=fault, OLF=1



-I ² C Control		
-Device A (LNBH23)		
	C OK IC ERROF	2
I²C Data OUT	\$04 Send I2C Pattern	
I²C Data IN	\$E5 Read from Device	1
I²C Address	02 🔽 🗹 Auto read (500ms	
CONTROL	STATUS	
		Light on=overload flag
T ITEST	Ø OTF	activated
EN EN	O EN	
	O VSEL	
TEN	O TMON	
T TTX		Light on=Vout fault

The screenshot in *Figure 36* shows the following conditions:

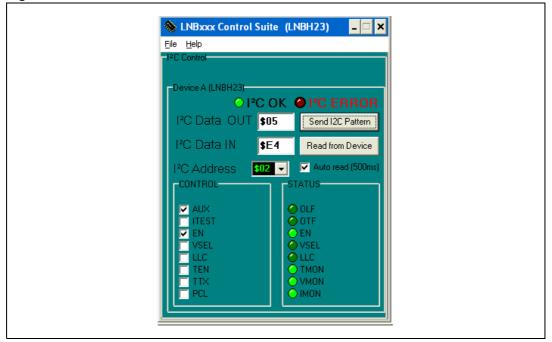
- EN=1
- Vout=fault, OTF=1


Figure 36. Overtemperature detection

If the PCL checkbox is checked, a simple output short-circuit current clamp is set. If not, the overcurrent protection circuit works dynamically: as soon as an overload is detected, the output current is provided for 90 ms (typ.), after which the output is set in shutdown for a time TOFF of 900 ms (typ). Simultaneously, the diagnostic OLF I²C bit of the system register is set high. This feature allows the reduction of the total power dissipation during an overload or a short-circuit condition:

- EN=1, PCL=1
- Vout=13.4 V_{tvp}

Figure 37. PCL deactivation



The maximum current detected at ITEST=0 is 6 mA, while at ITEST=1 it is 12 mA.

During the minimum diagnostic current test, setting only EN=ITEST=AUX=1 is recommended. The screenshot in *Figure 38* shows the following conditions:

- EN=1, AUX=1
- Vout=22 V (for testing multiswitch-box dish connection)

Figure 38. AUX activation

57

7 Revision history

Table 7.Document revision history

Date	Revision	Changes
13-Nov-2009	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14431 Rev 1

